Eight circle theorems page

You are here: Home > Maths intro > Circle theorems first page > Eight theorems


The Theorems

Download them as a .pdf file which summarises the theorems - basically a hard-copy, 2 sides of A4, version of this page.

Here, I've set out the eight theorems, so you can check that you drew the right conclusions from the dynamic geometry pages! I've included diagrams which are just dull static geometry, partly as a back-up in case the dynamic pages didn't work on your computer. I've also recently popped in more links back to the dynamic geometry pages: for example, you can just click on the diagram. I notice that Google seems to land you here if you were Searching for 'Circle Theorems', so you may not yet have seen the full dynamic delights lurking a mere click away!!!

If you get "Error. Click for details" where the dynamic geometry ought to be, it may just be worth reloading the page. If that doesn't work, it probably means Geogebra have changed the location of a crucial file, & I haven't updated the pages!!
If so, please let me know.



blue line

Circle Theorem 1

link to dynamic page

< Top of page      Next >

The angle at the centre is twice the angle at the circumference.


angles diagram

(Note that both angles are facing the same piece of arc, CB)


blue line

Circle Theorem 2

link to dynamic page

< Previous      Next >

The angle in a semi-cicle is 90°.


angles diagram

(This is a special case of theorem 1, with a centre angle of 180°.)


blue line

Circle Theorem 3

link to dynamic page

< Previous      Next >

Angles in the same segment are equal.


angles diagram

(The two angles are both in the major segment; I've coloured the minor segment grey)


blue line

Circle Theorem 4

link to dynamic page

< Previous      Next >

Opposite angles in a cyclic quadrilateral add up to 180°.


angles diagram

 


blue line

Circle Theorem 5

link to dynamic page

< Previous      Next >

The lengths of the two tangents from a point to a circle are equal.


angles diagram

CD = CE


blue line

Circle Theorem 6

link to dynamic page

< Previous      Next >

The angle between a tangent and a radius in a circle is 90°.


angles diagram

 

blue line

Circle Theorem 7

link to dynamic page


< Previous      Next >

Alternate segment theorem:
The angle (α) between the tangent and the chord at the point of contact (D) is equal to the angle (β) in the alternate segment*.



*Thank you, BBC Bitesize, for providing the precise wording for this theorem!
Here's a link to the their circles revision pages.



blue line

Circle Theorem 8

link to dynamic page


< Previous

Perpendicular from the centre bisects the chord:


angles diagram

DE = CE


Top of page